
Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Behavior CPU design
with NSL

Naohiko Shimizu, Ph.D.
 Copyright © 2012 IP ARCH, Inc.

All rights reserved.
You will have detailed information for NSL at http://www.overtone.co.jp/

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Concept

• A hardware is consist of registers,
terminals, modules.
– The design designates the behavior of the

hardware which consists of timing or condition
and values for registers and/or terminals.

Module X

Module Y

Input terminals Output terminalsregister

wire

C.L.
C.L.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Clock synchronized design

• We treat all the signal transitions between
clock phase as simultaneous signals at the
rising edge of clock.

Signal A

Signal B

t0 t1 t2 t3 t4

0 0 0

0 0 01

1

Clock

1

1

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Data path design

• Data path most affects on performance,
chip size, power consumption.
– Design the data path and check the data flow

with timing chart.

pc ir ma mdmem memalu

gr

+1

The position of registers
are VERY important.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Hardware algorithm design

• Hardware designer prefers two methods to
describe the hardware algorithm.
– State Machine

• behavior circles and arrows with transition
condition

– Pipeline control
• consist of number of stages
• Control commands flow into the stages with data in

pipeline

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

State Machine

State A
behavior A State B

behavior B

State C
behavior C

start

Condition 1

Condition 2

Condition 3

Condition 4

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Pipeline

start

Stage A Stage B Stage C

C.L. C.L. C.L.

Pipeline registers for data

decode decode decode

DATA

control

Interlock

control control control

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

HDL design

• List up required components such as
registers, wires, terminals.

• Design state machine.
• Write the behavior of each state.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Example design: CPU

• Make a small CPU of your own.
• Software visible register: PC, ACC all are 8bit

registers.
• Internal register OP:holds operational code
• internal register IM: holds immediate value

CPU
MEM

address

data

mread

mwrite

PC

OP

IM A
LUA

C
C

address

data

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Instructions

• List of instructions
• ADD: add memory to accumulator
• LI: load an immediate to accumulator
• LD: load from memory to accumulator
• ST: store to memory from accumulator
• JZ: jump if accumulator is equal to zero
• JMP: unconditional jump

OP IMM/MEM

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

State machine of CPU

Instruction fetch
read memory

PC++

Load immediate
read memory

PC++

Execution
execute a
instruction

start

ift imm

exe

CPU
MEM

address

data

mread

mwrite

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Timing chart

• Instructions takes 3 clocks to operate

mread

address

t0 t1 t2 t3 t4

Clock

data

0 1 2

ADD

100

OP
IM

ADD 100

ift imm exe

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Writing NSL: part1
#define ADD 0
#define LD 1
#define ST 2
#define JMP 3
#define JZ 4
#define LI 5
declare cpu {
 input datai[8];
 output datao[8];
 output address[8];
 func_out mread(address) : datai;
 func_out mwrite(address,datao);
}

OP code defines

data buses

Address output bus
Memory reading control
send with address,
result will available in data

Memory write control
send with address, data.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Writing NSL: part2

module cpu {
 reg count[4]=0, pc[8], op[8], im[8],

acc[8]=0;
 proc_name ift(pc), imm(op), exe(im);

Module name is cpu

Define internal control procedures
which corresponds to states.
Each procedures may have register
parameters.

Define internal resources.
Registers are defined.

Power on initialize to 0

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Writing NSL: part3

 any {
 count <=10: count++;
 count == 9: ift(0);
 }

Conditional execution

conditions

Power on sequence,
based on the counter

behaviors

Calling ift procedure with argument 0
which means start instruction of address 0.
Argument will transfer to parameter PC.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Writing NSL: part4

 proc ift {
 imm(mread(pc++));
 }

 proc imm {
 exe(mread(pc++));
 }

Procedure ift behavior definition.

Call procedure IMM
with argument of data.
The mread control signal’s
argument is PC, and the
memory read data is supplied
to parameter OP.
After then, PC will be increased.

Similar procedure IMM will call EXE.
The memory data is set to parameter IM.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Writing NSL: part5
proc exe {
 wire nextpc[8];
 any {
 op == ADD: acc:=acc+mread(im);
 op == LD: acc:=mread(im);
 op == ST: mwrite(im,acc);
 op == LI: acc:=im;
 }
 any {
 op == JMP: nextpc=im;
 (op == JZ) && (acc == 0): nextpc=im;

else: nextpc=pc;
 }
 ift(nextpc);
} }

Procedure exe behavior definition.

Temporary wire terminal.

Operation’s for usual inst.

Set next instruction address.

Call instruction fetch procedure.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Putting it on FPGA

• Memory model adjustment
– NSL uses synchronous write, asynchronous

read memory.
– You may need to insert glue logic for

adjusting setup and/or hold time.

• pin assignment
– We need to assign the physical numbers of

designed pins and power/reset pins.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Synchronous RAM

• FPGA uses synchronous internal rams.

mread

address

Clock

data

0 1 2

ADD 100

ift imm exe

We can shift the phase as 180 degree for RAM clock,
to emulate asynchronous read.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Synchronous ram modeling
declare ram256 {
 inout data [8] ;
 input adr[8] ;
 func_in rd(adr):data
 func_in wt(adr,datai);
}
module ram256 {
 reg dout[8];
 mem ram[256][8]={3,0};
 dout := ram[adr];
 func rd data = dout;
 func wt ram[adr] := data;
}

Initial value of memory.
Jump to 0 (infinite loop)

Registered output data

See actual cpu.nsl file
for current implementation.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Top module

• We will have memory and CPU.
declare top simulation {}
module top {
 cpu mycpu;
 ram256 mainmem;

 mainmem.m_clock = ~m_clock;

 func mycpu.mread mycpu.data = mainmem.rd(mycpu.address);
 func mycpu.mwrite mainmem.wt(mycpu.address, mycpu.data);
 _init {
 _delay(20);
 _finish();
 }
}

Phase shift 180 degree.

After 20 clocks, stop simulation.

See actual cpu.nsl file
for current implementation.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Run simulation
• Compile and run

– nsl2vl cpu.nsl -verisim2 -target top

– iverilog cpu.v
– vvp a.out

– gtkwave top.vcd cpu.sig

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Concept

• In NSL, designer describes the behavior
which is the set of conditions and values.
– NSLCORE analyzes the behavior and

decompose it for registeres/terminals/modules.
. Then it generates RTL.

• Unlike C language, designer can explicitly
designate the registers which is the key
components of hardwares.

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Fitting result on FPGA

Copyright (c)2012 IP ARCH, Inc. All rights reserved.

Conclusion

• You got a CPU with NSL.
– It works on simulator and/or FPGA.

• For advanced students, you can modify
the CPU and make useful instructions for
your project.

